Schedule: - Test Prep Today!

- Finish Welcome Quiz by tonight
- HW 1 closes Tuesday
2.2: Separable Differential Equations Entry Task: (Motivation) Implicitly differentiate $x^{2}+y^{3}=8$ and solve for $\frac{d y}{d x}$.

Idea: Separate... integrate both sides. Entry Task continued:
Find the explicit solution for

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-2 x}{3 y^{2}} \\
\text { with } y(0)= & 2
\end{aligned}
$$

Separable Differential Equations

A separable differential equation can be written as:

$$
\begin{gathered}
\frac{d y}{d x}=f(x) g(y) \\
\text { (or } \frac{d y}{d x}=\frac{f(x)}{g(y)} \quad \text { or } \quad \frac{d y}{d x}=\frac{g(y)}{f(x)} .
\end{gathered}
$$

Example: Find the explicit solution to

$$
\begin{aligned}
& \frac{d y}{d x}=-3 x y \\
& \text { with } y(0)=4
\end{aligned}
$$

You do: Find the explicit solution to
$\frac{d y}{d x}=2 x y^{2}$
$\frac{d y}{d x}$
$=\frac{1}{5}$.
with $y(2)=\frac{1}{5}$.

Observations:
A $1^{\text {st }}$ order differential equation can have:

1. No Solution
2. Infinitely many solutions (one "parameter" or "free constant", initial conditions not given)
3. A unique solutions (initial conditions given)

In a class on the theory of differential equations you would talk about this is more detail (conditions on the differential equations in order for a solution to exist and be unique). Read 2.4 and ask me questions if you are interested in learning more, but that is not required.

Example: Find an implicit solution to

$$
\frac{d y}{d x}=\frac{3 x+1}{5 y^{4}-y}
$$

with $y(2)=1$.

Example: Find the general explicit solution to

$$
2 \frac{d y}{d x}=3 x^{2}\left(y^{2}-1\right)
$$

Example:

A town currently has 2100 people

- The birth/death rate is proportional to the population size with a relative growth rate of $k=0.03$.
- In addition, 100 people/year are immigrating into the city from elsewhere.
Let $P(t)$ be the number of people in the city in t years from now.
Find $P(t)$.

